If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+156x+150=0
a = -16; b = 156; c = +150;
Δ = b2-4ac
Δ = 1562-4·(-16)·150
Δ = 33936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{33936}=\sqrt{16*2121}=\sqrt{16}*\sqrt{2121}=4\sqrt{2121}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(156)-4\sqrt{2121}}{2*-16}=\frac{-156-4\sqrt{2121}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(156)+4\sqrt{2121}}{2*-16}=\frac{-156+4\sqrt{2121}}{-32} $
| 4r+10=30 | | 1/7x+15=4/7x-9 | | 5(u–1)=4(1–u)+81 | | 4-9x=(-14) | | 34=7n+10n | | 34=7n+19n | | 8p+8=6p+12 | | 15=b-3 | | 2h-2h+4h+2h-h=20 | | 6-1/3x=(-1) | | 6^(x+5)=8 | | 6(3x-7)=22 | | 12j+4j-16j+4j+4j=8 | | 7a/2-21=0 | | 6b+b+2b-7b=10 | | m+18=−13 | | 1/10x=20 | | 5x−65=87. | | 2x2+32x+-150=0 | | 313z −34=36−5z | | Y=4/5x-19 | | x÷13=59 | | 6x+6(3x-8)=192 | | 5x+7(x-21)=-39 | | -7/8x+7=3/8x-3 | | 2/3x-10=(-12) | | 4x+(3x-50)=972 | | -9/5x=1 | | 3y+35=2y | | x+2=(x+3) | | 3x-14x=2-30+3 | | 5x+5(-5x-9)=75 |